

Moore Fans Maintenance and Operation Manual

START-UP PROCEDURES

if they are tightened. Take care not to exceed the stated torque limits. Manually rotate the fan while checking each blade for proper clearance.

to the same operating position, indicating that the blade angles are properly set and that all blades are equally loaded. If vibration or unbalance is evident, see section Vibration and Unbalance.

After the fan has been operating for several minutes, stop the fan and observe the blades as the fan comes to rest. All of the blades

Before starting the fan, manually check all bolts or nuts to see should return to their original position at the same rate. Inspect the inner surface of the fan ring and the blade tips for any indication of scoring.

The horsepower given on the Fan Specifications is the Start the fan and watch it in operation. All blades should move calculated horsepower (at the fan shaft) that is required for the specified performance. Consult the factory or the fan curve before increasing the blade angle for the fan to consume more than the specified horsepower.

Maintenance **Periodic Inspection**

PURPOSE

Fan failure is most likely the result of destructive repetitive stress acting over a period of time. These stresses may be caused by mechanical abuse, e.g. rough gears or drive shaft imbalance, or by aerodynamic abuse such as blade overload or abnormal flow conditions. Fortunately, these stresses manifest themselves in typical ways that may easily be detected on inspection if one knows what to look for. The purpose of this section of this manual is to describe the symptoms of potentially damaging mechanical problems and how they can be corrected. Aerodynamic abuses are covered in the Operation section.

FREQUENCY OF INSPECTION

The frequency of inspection varies widely in accordance with the severity of service and a suitable inspection schedule should be developed with experience over time. During the first week of operation, at least one inspection should be made. At these initial inspections, in addition to the items listed below, check all nuts for tightness to make certain that all were tightened properly at installation. Take care not to exceed the stated torque limits. Following the first week, it is probable that inspections of the fan need be made no more frequently than inspection of the drive.

BLADE ANGLE AND RUNNING POSITION

Turn off the unit and watch the blade tips. A looseness in the clamp bolt will permit a blade to flatten in angle. This usually can be detected by looking at the tips of the blades while the fan is slowing down. At the same time, before the unit comes to a complete stop, watch the track of the blade tips to see that all blades move to the same operating position. If one or more blades is at a substantially different position than the other blades, or if all of the blades are at a different

position than at the last inspection, inspect further. This condition may be caused by a damaged resilient mount, requiring blade replacement.

CRACKS, DENTS AND CORROSION

Skin cracking may be caused by the tips dragging on the fan ring, or it may be the result of long-term fatigue due to continued operation under conditions of vibration or unbalance as discussed in **Vibration and Unblance** which follows. Skin cracking can also be caused by continued operation under overload conditions as discussed in Causes of Blade Overload.

Cracking in air seals can occur if the air seal has been properly installed. See Installation Manual. Check to be sure the resilient washers are present and the nuts properly tightened.

Dents in blades are caused by objects falling into the fan or the fan striking some obstacle. Minor dents may sometimes be repaired by drilling a small hole in the center of the dent and pulling outward on the blade skin. Blades may be ordered from the factory for replacement. If there is any evidence of this type of damage, the hub should be carefully inspected as discussed in Section Hub Inspection, which follows.

The Type 5052 aluminum, a marine alloy, used as the blade material on Moore fans works well with either fresh or sea water. Waters that are acid, alkaline, or contain copper salts, however, should be avoided for all aluminum alloys. If you have questions regarding the suitability of the fan materials under certain water conditions, please contact the factory.

HUB INSPECTION

If damage to the fan has occurred, the hub should be carefully inspected since subtle damage may have been caused that is not readily apparent. Check the hub for any sign of bending or twisting of the hub tubes. Hub tubes cannot be replaced in the field on manual fans and a new hub should be ordered.

ANNUAL INSPECTION

CLEAN BLADES IF INDICATED

A smooth blade surface is essential for efficient fan performance. If an incrustation forms on the blades it should be All nuts and bolts should be checked and careful scrutiny given removed. Use steel wool as an abrasive along with a mild detergent or a very mild form of solvent. Lye must not be used because it attacks aluminum readily.

CHECK SYSTEM PRESSURE

Radiator sections may be effected by the accumulation particularly troubling.) These accumulations may significantly replace the blade and continue normal operations. increase the static pressure. Adjust the blade angle if necessary as described in Checking Blade Load.

CLOSE INSPECTION

The yearly inspection should be a very thorough one. to all highly stressed areas.

Inspect the resilient mounts as follows: With the fan turned off, grasp each blade and feel for looseness at the mount. If in doubt, the blade should be removed and the mount assembly visually inspected. Wear is indicated by a fretting effect and the resilient mount material will show signs of of dust and dirt in some atmospheres. (Cottonwood seeds are extruding from the cavity. If these indications are not apparent,

> Inspect the blade tips for any signs of cracking and the fan ring for any scoring that might indicate that the blades have been striking or rubbing against the fan ring.

VIBRATION AND UNBALANCE

GENERAL

It is always possible that the minute unbalances of the various components may combine to provide a noticeable lack of balance. This rarely occurs, since it is unlikely that all unbalanced components will become assembled with their heavy sides in the same direction. Nevertheless, if unbalance is noted, the various components should be rotated into different positions to see if this might cure the unbalanced condition.

If vibration or unbalance occur, either at the time of installation or later during the operation of the unit, its cause **BELT DRIVE UNITS** may be determined by following the directions below.

FAN UNBALANCE

Vibration is most likely to be caused by the fan if the blades are not set at the same angle. If the blades are properly set, the fan is the least likely cause of vibration. All fan components are balanced to within ± 0.2 ft-lbs.

If the fan is in an unbalanced condition, the frequency of vibration of the structure will be that of the RPM of the fan ROUGH GEARS and is quite low. In the case of large fans, the frequency is often fan. A vibration of 500 RPM or less will be felt as a weave in the structure rather than a vibration. Below 400 RPM, the vibration a frequency meter.

bearing seats or bearings journaling the shaft on which the fan is mounted. This condition will cause the shaft to rotate eccentrically, throwing the weight of the fan off center, resulting shaft accelerates and decelerates with each pinion tooth in unbalance of the frequency of the fan RPM.

accomplished as described below in Field Blancing.

shaft and its supporting bearings by fan unbalance are negligible. vibration is at least as serious as that caused by bad bearings.

A rotating centrifugal load of 100 pounds, due to unbalance, No piece of rotating equipment is perfectly balanced. would be extremely objectionable and possibly even damage the structure on which the drive was mounted. By contrast, it would be unlikely that the drive shaft of a fan, of perhaps 25 HP, would be supported on bearings rated less than 2000 or 3000 pounds radial load. For higher horsepower, the bearing capacity would be correspondingly increased. From this it is evident that speed reducer or drive shaft bearing failure could never be caused by moderate or even objectionable fan unbalance.

The more common causes of vibration in belt drive units are not the drives themselves but the result of shafts that are too flexible or non-rigid supporting members. Vibration can be caused by misalignment of the sheaves or poorly adjusted belt tension. Consult the manufacturer of the drives for information. The quickest way to identify the cause of vibration in belt drive units is to operate the fan with the blades removed.

Continued operation on rough gears and bearings is low enough to be mentally counted along with the rotation of the almost certain to develop cracks in the blade skins. Rough gears may be of two types:

1. Rough or failed bearings in the drives or gears will may be mentally counted and above that point may be read with result in a high frequency vibration being transmitted into the fan where some areas of the skin will respond to the frequencies Before assuming fan unbalance, check for loose applied. Cracks will appear in the blade skin and eventually, in some areas, the skin may actually fall away.

2. The other type of rough gear occurs when the output engagement. With a six tooth pinion and a motor speed of 1800 After all checks have been made and the fan is still RPM, or 30 cycles per second, this gear misalignment impresses determined to be unbalanced, field balancing may be upon the fan a vibrating frequency of $30 \times 6 = 180$ cycles per second. If the engagement of teeth is also included, the It should be noted that the loads imposed on the drive frequency is 360 cycles per second. This type of high frequency

THROAT FLUTTER

will develop a reduced pressure area (or suction) on the fan work. If the vibration ceases under this condition, it is certain throat or ring at the tip of the blade. This suction tends to draw that throat flutter is present when the blades are loaded. the throat toward the tip of each blade, which means that a four blade fan would tend to draw the throat into something FIELD BALANCING approaching a square while a six blade fan would draw it into something resembling a hexagon, etc. Since the fan is rotating, structural change or by installing one new blade on an old fan the effect on the throat is that of continually drawing it into a where the existing blades had changed in weight in the course of rotating polygon. The resulting throat flutter is frequently operation. mistaken for fan unbalance.

that flutter will not exist. A weak or flexible throat, particularly when used with a fan of a low number of blades, will be greatly affected by this type of vibration. Throat flutter is easily detected due to the fact that it is invariably of a frequency of the fan RPM times the number of blades on the fan.

Throat flutter will cause no damage to the fan so long as the throat does not disintegrate and fall into the fan blades. It may be eliminated by stiffening or bracing the throat.

If in doubt that throat flutter is the cause of vibration, Any fan that is effectively moving air at the tips of the blades reduce the angle of the blades until the fan is doing little or no

Unbalance in older fans may develop because of some

Use wire to attach a small weight in succession to each A substantial throat or ring will be sufficiently rigid of the air seal studs until the best location for the weight is found. The weight should then be increased or decreased until the best balance is achieved. The permanent weight may then be secured to the stud or hub tube, whichever is the most convenient for the type and shape of weight to be used. One or more pieces of metal shaped like a washer could be placed over the stud, on the hub tube, behind the stud, or over the threaded portion of the rod end. Aluminum or stainless weights should be used and weights should not be attached to the blade skin.

WARRANTY

purchaser for resale, that the fans manufactured and sold by shipping damage, or if repairs or part replacements have been Seller to Buyer under this Agreement will be free from all made or attempted without Seller's prior written authorization. defects in material and workmanship under ordinary use for a SELLER SHALL NOT BE LIABLE IN ANY EVENT FOR ANY INCIDENTAL OR period of two (2) years from the date of shipment or one (1) year CONSEQUENTIAL DAMAGES FOR BREACH OF THIS OR ANY WARRANTY. from the date the fan is installed on a customer's premises, THIS WARRANTY IS IN LIEU OF ALL OTHER GUARANTEES OR EXPRESSED whichever occurs first. This warranty period shall apply only if Seller receives written notice of any defect within the warranty period. Upon receipt of such notice, Seller, at its option, may require Buyer to return the fan at Buyer's cost to Seller for inspection by Seller. If the fan is found to be defective on inspection by Seller, as a sole and exclusive remedy, Seller will, at its option, either repair or replace the fan. This warranty shall

MOORE FANS LLC (the Seller) warrants only to Buyer, as its not apply to damage on account of misuse, neglect or accident or WARRANTIES AND ALL IMPLIED WARRANTIES, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND OF FITNESS FOR A PARTICULAR PURPOSE. DUE TO THE VARIETY OF CONDITIONS UNDER WHICH THE FANS MAY BE USED, RISKS OF RESULTS OBTAINED FROM USE OF THE FANS, WHETHER USED ALONE OR IN COMBINATION WITH OTHER PRODUCTS, IS ENTIRELY BUYER'S. THE ABOVE LIMITATIONS ON DAMAGE AND EXCLUSION OR LIMITATION OF IMPLIED WARRANTIES ARE NOT APPLICABLE TO THE EXTENT PROHIBITED BY STATE LAW.

OPERATION AERODYNAMIC ABUSE

ABOUT THIS SECTION

abuse described on the preceding pages are destructive for all be expected to vary more than plus or minus 50%. Fan design types of operating equipment. It is less well recognized that — based on such assumptions is entirely reasonable and, with for fans — aerodynamic stresses are an even more serious proper drives and installation conditions, has proven highly hazard. This section deals with the causes of destructive successful. aerodynamic stresses and how they can be avoided.

Although this information is given primarily for the ABNORMAL CONDITIONS benefit of operators of Moore equipment, it may be applied to fans of any manufacture.

Unlike smaller fans, which are typically furnished complete with their surroundings, the large fan wheel is supplied as an unprotected component of the system and is installed in innumerable types of surroundings. Not only do the types and conditions of the drives for these fan wheels vary widely, but the entrance and exit conditions and the enclosure for the wheel assume a myriad of possible combinations. In designing his product, the manufacturer of fan wheels must anticipate the operating conditions based upon his knowledge of what is reasonable and customary for the industry. He may over-design for abnormal stresses only until the practical limit is reached to may develop, adjusting linkages may wear, and ultimate failure avoid excessive weight, cost and inefficiency.

NORMAL OPERATING CONDITIONS

The fan manufacturer assumes a fairly reasonable atmosphere degrees. for the operation of his product, including the following:

- The fan selection will be reasonably in line with the performance the unit is expected to maintain, with an adequate blade area for the pressure required at the given RPM. Blades will not be loaded beyond their capacity to maintain air flow.
- A fan ring will be provided that is round, rigid and of a depth at least sufficient to cover the tips of the blades. Tip clearances will be uniform and controlled.
- The approach air will represent a relatively uniform and axial flow with, of course, some unavoidable turbulence expected. Adequate open area will be provided at the inlet of the fan.
- Major obstructions will not be present at either the inlet or discharge of the fan.
- The RPM of the fan will be within the design limits.
- The relative direction and velocity of approaching air to the blades will be fairly constant and protection will be provided from extreme wind conditions.

It is widely acknowledged that the kinds of mechanical Under such conditions, the unit stresses in the blades would not

Abnormal operating conditions result in destructive repetitive stresses that can seriously shorten fan life. The aerodynamic abuses discussed in this section can cause repeated flexing of the fan blades and hub. Violent displacement of the resiliently mounted Moore fan blades may occur - a greater displacement than would occur in rigidly mounted blades. The resilient mounting, of course, minimizes the structural unit stresses which would be transmitted to the root of the blade and into the hub and drive. Although Moore units may be expected to resist greater stress than units of conventional design, such repetitive stresses may exceed the capability of the resilient mounts to absorb them. If so, fatigue of the mounts and metal becomes a possibility.

Some of the abuses set out in the following text are far less important than others. All of them may occur in varying

Specifically, abuse due to serious repetitive stresses can lead to mount failure and, if carried to extremes, can require blade replacement. In units of other manufacture with rigidly mounted blades, repetitive stresses of this type may lead to blade breakage, probably near the root or at the point of attachment to the hub where stresses are highest, or may lead to failure of the hub itself. The resilient mount design, unique with Moore fans, dampens these vibrational forces and results in a fan that is far less vulnerable to failure from these conditions than other units with rigidly mounted blades. Even so, extreme conditions can cause damage.

A well-designed fan can be expected to operate for many years without trouble under normal operation as described above. The extreme repetitive stresses described below, however, will certainly reduce the life of the fan, causing failure many years sooner than would occur if the fan were operated as intended. Fortunately, these destructive conditions are readily observable to someone who is knowledgeable about them, and they can be corrected with reasonable effort and expense once they are observed.

BLADE OVERLOAD

Of all the aerodynamic abuses to be avoided in the resulting in a severe vibration throughout the aircraft as operation of a fan, the most important is that of the flow alternately makes and breaks. Anyone who has overloading the fan blades. Blade overload occurs because experienced a stall in an airplane will be familiar with this of insufficient blade area: In other words, when there is an violent phenomenon. inadequacy in the number of blades on the fan selected.

pressure that each blade will produce at a given RPM with than downward, the convex side of the blade being the good efficiency. This pressure is called 100% blade load. lower surface rather than the upper surface as in the case When blade load exceeds 110%, the fan will not only of an airplane. The result of blade overload is identical: operate at lower efficiency, it may be subject to structural When blade load exceeds that allowable, a violent damage as well.

the pressure to be produced by one blade determines the second. number of blades required for the anticipated performance. Whenever information is available, The consider that the available number of blades are set at too Moore Company checks the selection. Even so, steep an angle to be able to move air at the axial velocity underestimation of the pressure requirements by the which is necessary to maintain a smooth flow over the system designer, or changes in the operating conditions convex surface. In other words, to move air at the velocity over time, may result in overload conditions.

concern? We are all aware of the fact that an airplane have to be maintained for an air flow corresponding to this traveling at a given speed can carry only a certain load. If angle is greater than the total pressure capability of the the speed of the airplane is decreased or the load given number of blades at this RPM. Such a condition can increased, stalling flow over the wing will occur. In the only be corrected by decreasing the blade angle until case of an airplane, approximately two-thirds of the lift smooth flow is obtained or by increasing the number of provided by the wing is the result of the air flow over the blades and the total pressure potential of the fan until the top or convex portion of the wing. Lift is provided as a fan's pressure potential equals the pressure necessary to reaction to the flow of air being accelerated and deflected move the specified quantity of air through the system. downward as it passes over the wing. A negative pressure area is thus formed on the top surface of the wing which flow, or blade overload, will significantly shorten the life tends to lift it upward.

clings to the surface of the wing, little turbulence is under Section Checking Blade Load which present. When the load is increased, or the speed follows. Note that although airflow remains constant or decreased, the angle of the wing to the air stream must be decreases, horsepower continues to increase with increased increased to a point where the air flow breaks away from blade angle. the upper surface of the wing. This is known as stalling or burbling flow, since the air, instead of clinging to the installation, can only absorb forty horsepower, for wing, breaks away near the leading edge and leaves what example, the blades may be pitched up to consume fifty might be called a turbulent void above the upper wing horsepower without any increase in air delivery, and surface, nullifying the accelerated flow which was possibly with a decrease. As a result, the extra ten responsible for the greater part of the lift of the wing.

of its lift. Flow, however, will re-establish briefly and blades so that blade load will amount to slightly less than break again, the cycle being repeated continuously, 100% of full blade load.

A fan blade is no different than an airplane wing The Moore system of rating is based upon the except that the air usually is being deflected upward rather vibration will take place in the blade as the laminar, or In selecting a fan, the total pressure divided by uniform, flow makes and breaks perhaps many times a

Another way of looking at this problem is to necessary for this blade angle, plus overcoming the static Why is a blade overload condition of such resistance of the system, the total pressure which would

Continued operation under conditions of stalling of the fan. Operation under these conditions will also So long as air flow over the wing is smooth and reduce efficiency to a ridiculously low figure. See the chart

In conclusion, if a given fan, in a given horsepower is totally wasted -- perhaps worse than When this occurs, the wing loses a large portion wasted. It is good practice to select a sufficient number of

CAUSES OF IMPROPER BLADE LOADING

VARIATION FROM PREDICTED CONDITIONS

cooling towers undoubtedly do their best to accurately of the fan blade toward the hub then must produce a state the calculated static resistance of the system, a higher pressure to compensate for the portion near the tip. number of factors may cause the actual conditions to vary from the design conditions. When a variation occurs, it area between the tip of the blade and the fan ring. Air that may be found, upon testing, that the static pressure for a has been pumped by the fan will return downward through given volume through the system is higher than this unswept area at a velocity greater than that at which it anticipated. In this case, the number of blades provided passed through the fan in the desired direction. This may be inadequate to meet the performance. On the other condition adds even further to the requirements of the hand, the static pressure may have been overestimated and portion of the blade which is doing the work and excess blade area provided, resulting in a fan with efficiency will be greatly reduced. unutilized capacity operating at low efficiency.

selected to move the anticipated volume of air and the fan in this example might be considered an effective 10-ft number of blades is selected to maintain the total fan. It would have to deliver sufficient air to satisfy the anticipated pressure required to move this volume at a performance requirements of the installation, plus the given RPM. If the static pressure turns out do be higher amount of air which is returning in the void between the than predicted, the fan may then be operating in an tips and the throat. Under such circumstances, excessive overload condition. If the RPM cannot be increased, the blade loading could occur even though the required only solution to this condition is to reduce the blade angle system pressure is not achieved. until the fan can carry the then reduced volume at the originally anticipated pressure. Since reducing the POOR ENTRANCE CONDITIONS volume, while holding the total pressure as originally anticipated, can only reduce the horsepower, it is then directions, increasing in velocity as it nears the opening, impossible to consume the horsepower originally intended then accelerating rapidly as it enters. The air approaching without overloading the fan. This is one of a number of from the side must be turned through 900 to enter a ring reasons for providing some safety factor in blade loading whose entrance terminates in a flat plate. If the inlet end at the time of original fan selection.

excessive number of blades may be specified in the turned through 1800. The inertia of the approaching air interest of making a conservative selection. If the static prevents it from turning sharply and advancing parallel to pressure has been overstated, the theoretical number of the desired flow. It consequently swoops toward the blades will be greater than needed. This theoretical center, leaving the outer area of the fan with reduced flow number of blades is usually a fractional number and the or even reverse flow near the ring. actual number of blades used must, of course, be the next larger integer, resulting in some "safety factor" in the to that previously described for excessive tip clearance in selection. If, in addition, a blade or two is added as a that the effective diameter has been reduced and excessive "safety factor" or in anticipation of increased future blade loading could occur even though the required requirements, it may be impossible to meet the original system pressure is not achieved. Efficiency will be greatly performance requirement efficiently. The only way to reduced. provide the original performance and draw no more than the original horsepower is to flatten the blade angle. There **EXCESSIVE DEFLECTION** is a limit, however, in how far the blade angle may be reduced before further reduction will decrease airflow dependent upon the square of the velocity of the blades without a further reduction in horsepower. For belt drive relative to the air. If the air could be moved into the fan in units, the most practical solution to this problem is to an axial direction and passed through the fan into the reduce the RPM of the fan.

EXCESSIVE TIP CLEARANCE

blade, air from the high pressure surface of the blade will also deflect the air in the direction of rotation of the fan. flow around the tip and nullify the negative pressure on The air when rotated with the fan is moving with the underside of the blade for some distance in from the

tip. For a fan of, say, 12-ft diameter, the last 12 to 18 inches of the blade could be producing no pressure Although those who design air coolers and whatever and performing no useful function. The balance

Excessive tip clearance also leaves an unswept

With the loss of a foot at the tips of the blades, Inadequate Blade Area: The blade angle is plus the back flow between the tips and the ring, the 12-ft

Air will approach the fan from all possible of the ring projects some distance out, with approach **Excessive Blade Area:** Occasionally, an possible from all directions, a portion of the air must be

The effect of poor entrance conditions is similar

The pressure which the fan can achieve is discharge without changing direction, the relative velocity of the blades to the air stream would be the true velocity of the blades at any point. This, of course, is not the case. Unless the fan ring is very close to the tip of the For the blades to accomplish work upon the air, they must a certain velocity in the same direction as the rotation of allowable pressure capability of the fan, even though it does the fan, which reduces the relative velocity between the not reach the full rated pressure. fan blades and the air by some portion of this rotational velocity.

Moore fans are designed in contemplation of a maximum deflection of 60° at the hub, decreasing to a very small value at the tip. This deflection is considered in the determination of the pressure which may be provided by each blade over its full length. If fans are selected, or if conditions exist, which cause the deflection to exceed 60° at the hub, the velocity of the blades relative to the air is less than anticipated and the blades will not provide the rated pressure. The test below, however, will show the full

CONCLUSION

As can be seen by the various points discussed in this section, there are a number of complex factors which tend to cause fans to be operated in a condition of improper blade loading which can shorten fan life or lower efficiency. When blade angles are set to consume the specified horsepower (at the fan shaft), the resulting performance should be very close to the specified performance. If this is not the case and the problem cannot be identified or corrected, please contact Moore for assistance.

CHECKING BLADE LOAD

complete field test on the fan. Although laborious, this method fan is able to consume full rated fan horsepower without will provide ample proof so long as neither excessive tip clearance nor poor entrance conditions are present. If either are present, the conditions set out in **Poor Entrance Conditions** would apply and the fan could be overloaded even though

the total pressure indicated by the test was within the allowable point it will level off. blade loading.

detecting blade overload, or determining maximum allowable static pressure curve may merely stay level or may drop off blade angle, is set out below. The equipment needed is a wrench, sharply. In rare cases, it may level off and again start rising as a torque wrench, a protractor and a draft gauge (or manometer).

All fans are shipped with the blade angle set for the anticipated performance requirements furnished to The Moore chart opposite. Operation beyond the first point of leveling, or in Company by the purchaser. This blade angle is called out on the Fan Specification Sheet. This angle refers to the angle measured at the location shown in the Installation Manual. Hubs are shipped with the rod ends set at this angle.

To start the test, adjust the blades to an angle of approximately half that called out on the specifications or measured on the units. Connect the draft gauge to as quiescent a spot in the plenum as possible, preferably in the corner of the plenum and either ahead of or following the fan, depending upon whether the application is induced or forced draft. Since the figures obtained are purely relative, it is not necessary that accurate static pressure readings be obtained, but rather that the readings taken represent a consistent series of pressures at the setting chosen may fall below or above the specified static point of reading chosen.

Start the fan and record on the chart provided the blade angle and he static pressure indicated. Advance the blade angle fan capable of a higher blade loading than originally specified. A by one or two degrees and repeat the performance, recording blank chart is also provided for your use. again these readings. Keep increasing the angle and following

One method of checking blade load is to run a this procedure until the motor is fully loaded, in which case the overload OR until the curve which will have started on a definite slope begins to approach the horizontal. It will be noted that the static pressure will be consistently increasing with increased blade angle until the blade loading reaches maximum, at which

Subsequent increases in blade angle may have quite A better, more convenient and simpler method of different effects, depending on the individual installation. The the fan begins operating as a centrifugal blower.

> Typical examples are shown in dotted lines on the the area of the dotted lines, is indicative of blade overload. Note that power consumption load will continue to increase even though the fan has passed into overload condition. The maximum blade angle allowable is that which produces a static pressure about 5% below the point where the curve becomes level. This represents a safe loading, and the blades may be set and left at this angle regardless of the location on the chart, assuming the motor is not overloaded.

> The point so selected will also approximate the point of the most efficient operation of the fan. Due to possible error in static pressure predictions, or in readings which are intended only to be relative, as well as other variables, the final blade pressure.

> A typical performance chart is shown opposite for a

SAMPLE GRAPH OF BLADE ANGLE IN DEGREES

anything may happen, as indicated by the dotted extensions into increased performance. the shaded overload area. Note that the final selected blade angle

Note in the chart above that static pressure (and air flow) has is 5% below the point where the static pressure curve becomes reached its maximum at an 11 degree blade setting and blade level. The horsepower curve has been added to illustrate the point overload is beginning. With further increase in blade angle, that in an overload condition, horsepower will increase without

BLADE ANGLE IN DEGREES BLANK CHART FOR CUSTOMER USE

DAMAGING OPERATING CONDITIONS

GENERAL

and unloading is detrimental to fan performance, both in terms quite high. It is necessary for the fan to pick up this air and direct of efficiency and structural durability. Normal obstructions, of it inward. In a strong wind, the angle of air moving through the course, must be expected in the air stream. There are certain fan may be increased more than 45°. conditions, however, which may be avoided by reasonable attention to the points briefly discussed in this section. Additional information on the importance of inlet and discharge conditions can be found at moorefans.com.

Ideally, air should approach a fan in an axial direction and at a uniform velocity over the area of the fan. Air approaching a fan at an angle tends to increase the relative velocity of the blades to the air on one side of the fan and decrease the relative velocity on the other side. This means that the fan blade during one-half of its revolution is picking up a heavier air load due to the higher relative velocity and, through the other half of its revolution, a lower air load as it goes "down wind". The net result is a repetitive loading and unloading of the blades at each revolution of the fan. This condition can be quite serious if the velocities are high and the angle of approach deviates considerably from axial.

WIND

With a vertically mounted fan blowing outward into the wind and surrounded by a short fan ring or stack, high winds may cause some concern. The farther the ring extends beyond the fan, the less effect would be expected from wind. It is a fact, however, that wind across the face of the ring will affect the the fan discharge may be increased by as much as 45° under high per hour. Note that the velocity (VR) of the fan blade relative to wind conditions.

In the case of a fan blowing inward in a short ring, the square of this velocity, or 2.05.

THE EFFECT OF AIR LOAD ON HUB AND DRIVE

As the fan rotates, centrifugal force causes the blades to rise (as multiplied by the distance from the fan centerline to the point of do the blades of a helicopter). The air load (FA) is uniform over application of the force on the blade (RF). This moment will be the blade, but there is a point (shown on the blade in the drawing from 2 to 4 times as great as that produced by the Moore fan below) where, if the total load were applied at that point, the under the same conditions. effect would be the same. The resultant of the air load (FA), assumed in this example to be downward, and the horizontal

centrifugal force (FC) is the force on the blade (FB). The blade automatically positions itself in the direction of this force with bending moment due to the air load at the point of attachment of the result that the force is translated inward to the pivot point, as the blades to the hub since this is usually the structurally weakest illustrated by the dotted line. The effect of this arrangement is area of the fan. The moment due to the air load at this point is exactly as if the total air load (FA) were applied at the pivot the load (FA) times the distance (D). For the Moore fan, this point rather than at the point outward on the blade. The moment is zero since the blades are attached at the pivot point. A maximum bending moment applied to the shaft by the air load is more complete discussion of the Moore fan design can be found equal to the load (FA) multiplied by the distance from the fan at moorefans.com. centerline to the pivot point (RP).

condition is even more critical. In such an installation, the air on Any condition which causes repeated blade loading the inlet side of the fan has a horizontal velocity which may be

The illustration above assumes a fan operating with a direction of air flow well down into the ring. In the case of a fan tip speed (VB) of 10,000 feet per minute (114 miles per hour) installed near the outlet of the ring, the direction from axial of with a horizontal component of wind velocity (VW) of 20 miles the air varies by a factor of 1.43. The blade load varies as the

In conventional fans with rigidly attached blades, the bending Moore fan blades are attached to the hub by a pivot. moment at the shaft due to the air load is equal to the load (FA)

Also of concern with the conventional fan is the

that the blade load on the side where the blade is going

obvious that operation under such conditions will impose direction should be avoided. tremendous repetitive loadings on the fan blades.

In areas of unusually high wind velocities, it may be UNEVEN TIP CLEARANCE advisable to shield the fan in some manner.

OBSTRUCTIONS

behind the fan, are to be expected. In fact, it would be virtually impossible to eliminate all obstructions. Structural supporting will flow from the high pressure side of the blade through the members, foundations and the like, need not be of serious opening between the blade tip and the ring and nullify the concern although all obstructions, even small ones, will increase negative pressure on the under side of the blade. This will unload the static pressure and must be taken into consideration by the system designer in specifying the fan performance.

should be twice the net area of the fan (fan area minus hub area). repetitive vibration. Every effort should be made to keep the tip In other words, the air approaching the inlet of the fan should clearance to a minimum and to have this clearance as constant as have no more than half the velocity of the air passing through the possible around the entire ring. fan. This area should be distributed reasonably uniformly. It

In this rather common wind condition, it can be seen would be unwise to attempt to operate a fan with one-half or one -third of the fan area completely blanked off. Such a condition against the wind will be double the load on the side where the would cause stalling of the fan blade through one-half the blade is going with the wind. In a 40 mile per hour wind, the revolution but create a condition of overload in the half which blade load would vary by a factor greater than 4. In a 60 mile per was not blocked off. Excessive vibration would result. Any hour wind, the load would vary by a factor of more than 10! It is condition which forces the air to approach the fan in a non-axial

Where fan rings are out of round or not centered with the fan, the tip clearance of each blade will vary as it makes a revolution. If tip clearance is tight at one point and excessive at Obstructions of one type or another in the air stream, ahead of or another, proper flow will establish itself at the tight point, loading the blade to the very tip, while at the loose point the air the blade near the tip within the area of excessive tip clearance. Under this condition, the blade will load and unload near the tip The total free area from which the fan can draw air one or more times per revolution, resulting in an undesirable